

GCE MARKING SCHEME

MATHEMATICS AS/Advanced

JANUARY 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2013 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Unit	Page
C1	1
C2	6
C3	12
M1	19
S1	28
FP1	32

Mathematics C1 January 2013

Solutions and Mark Scheme

Final Version

1.	(<i>a</i>)	Gradient of $AB = \underline{\text{increase in } y}$		M1
		increase in x		
		Gradient of $AB = \frac{4}{2}$ (o	or equivalent)	A 1
		A correct method for finding the equation of A.	B using the candida	te's
		value for the gradient of AB.	C .	M1
		Equation of \overrightarrow{AB} : $y-1=2(x-4)$	(or equivalent)	A1
		(f.t. the candidate's value for	the gradient of AB)	
		Equation of $AB: 2x - y - 7 = 0$,	
		(f.t. one error if both	M1's are awarded)	A1
	(<i>b</i>)	Gradient of $L = -\frac{1}{2}$ (or equivalent	alent)	B1
	(0)	An attempt to use the fact that the product of pe		
		(or equive		M1
		Gradient $AB \times G$ radient $L = -1 \Rightarrow AB, L$ perpendicularly		1411
		Oracle if $AD \times O$ radie if $L = -1 \implies AD$, L perpendicular.		A 1
			(convincing)	AI
	(c)	An attempt to solve equations of AB and L sim	ultaneously	M1
	` /	x = 5, y = 3	(convincing)	A 1
	(d)	A correct method for finding the length of $AB(A)$	AC)	M1
		$AB = \sqrt{20}$		A1
		$AC = \sqrt{45}$		A 1
		$k = {}^{2}/_{3}$	(c.a.o.)	A 1

2. (a)
$$\frac{6\sqrt{7} - 11\sqrt{2}}{\sqrt{7} - \sqrt{2}} = \frac{(6\sqrt{7} - 11\sqrt{2})(\sqrt{7} + \sqrt{2})}{(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2})}$$
Numerator: $6 \times 7 + 6 \times \sqrt{7} \times \sqrt{2} - 11 \times \sqrt{7} \times \sqrt{2} - 11 \times 2$ A1
Denominator: $7 - 2$ A1
$$\frac{6\sqrt{7} - 11\sqrt{2}}{\sqrt{7} - \sqrt{2}} = 4 - \sqrt{14}$$
 (c.a.o.) A1

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $\sqrt{7} - \sqrt{2}$

(b)
$$\frac{3}{2\sqrt{6}} = p\sqrt{6}$$
, where p is a fraction equivalent to $^{1}/_{4}$ B1
$$\left[\frac{\sqrt{6}}{2}\right]^{3} = q\sqrt{6}, \text{ where } q \text{ is a fraction equivalent to }^{3}/_{4}$$
 B1
$$\frac{3}{2\sqrt{6}} + \left[\frac{\sqrt{6}}{2}\right]^{3} = \sqrt{6}$$
 (c.a.o.) B1

3. y-coordinate at P = -2

dy = 6x - 14 (an attempt to differentiate, at least

- $\frac{dx}{dx}$ one non-zero term correct) M1
- An attempt to substitute x = 3 in candidate's expression for $\frac{dy}{dx}$ m1

Use of candidate's numerical value for $\frac{dy}{dx}$ as gradient of tangent at P m1

Equation of tangent at P: y - (-2) = 4(x - 3) (or equivalent) (f.t. only candidate's derived value for y-coordinate at P) A1

4. (a) (i) a = 4 B1

b = -11 B1

(ii) least value -33 (f.t. candidate's value for b) B1 corresponding x-value = -4

(f.t. candidate's value for a) B1

(b) $x^2 - x - 9 = 2x - 5$ M1

An attempt to collect terms, form and use a correct method to solve their quadratic equation m1

 $x^{2} - 3x - 4 = 0 \Rightarrow (x - 4)(x + 1) = 0 \Rightarrow x = 4, x = -1$

(both values, c.a.o.) A1

When x = 4, y = 3, when x = -1, y = -7

(both values, f.t. one slip) A1

The line [y = 2x - 5] intersects the curve $[y = x^2 - x - 9]$ at two points (-1, -7) and (4, 3) (f.t. candidate's x and y-values)

- 5. (a) An expression for $b^2 4ac$, with at least two of a, b or c correct M1 $b^2 4ac = 6^2 4 \times 5 \times (-3k)$ $b^2 4ac > 0$ $k > -\frac{3}{5}$ (o.e.)

 [f.t. only for $k < \frac{3}{5}$ from $b^2 4ac = 6^2 4 \times 5 \times (3k)$] A1
 - (b) Finding critical values x = 2.5, x = 3 B1 $2.5 \le x \le 3$ or $3 \ge x \ge 2.5$ or [2.5, 3] or $2.5 \le x$ and $x \le 3$ or a correctly worded statement to the effect that x lies between 2.5 and 3 (both values inclusive) (f.t. candidate's derived critical values) B2 Note:

2.5 < x < 3

 $2.5 \le x, x \le 3$

 $2.5 \le x \ x \le 3$

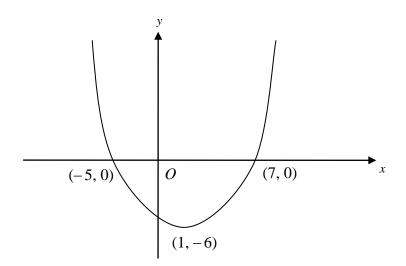
 $2 \cdot 5 \le x \text{ or } x \le 3$

all earn B1

6. (a)
$$y + \delta y = -(x + \delta x)^2 + 4(x + \delta x) - 6$$
 B1
Subtracting y from above to find δy M1
 $\delta y = -2x\delta x - (\delta x)^2 + 4\delta x$ A1
Dividing by δx and letting $\delta x \to 0$ M1
 $\frac{dy}{dx} = \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = -2x + 4$ (c.a.o.) A1

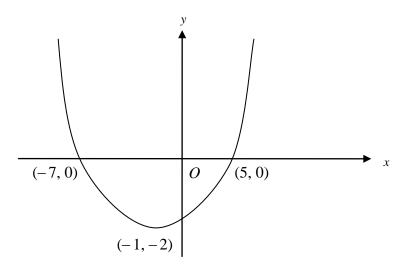
(b)
$$\frac{dy}{dx} = 5 \times \frac{4}{3} \times x^{1/3} - 9 \times -\frac{1}{2} \times x^{-3/2}$$
 B1, B1

7. Coefficient of
$$x = {}^{6}C_{1} \times a^{5} \times 4(x)$$
 B1
Coefficient of $x^{2} = {}^{6}C_{2} \times a^{4} \times 4^{2}(x^{2})$ B1
 $15 \times a^{4} \times m = k \times 6 \times a^{5} \times 4$ $(m = 16 \text{ or } 4 \text{ or } 8, k = 2 \text{ or } \frac{1}{2})$ M1
 $a = 5$ (c.a.o.) A1


8. (a) Use of
$$f(-2) = 0$$
 M1
 $-8p + 72 + 8 - 8 = 0 \Rightarrow p = 9$ (convincing) A1
Special case
Candidates who assume $p = 9$ and show $f(-2) = 0$ are awarded B1

(b)
$$f(x) = (x+2)(9x^2 + ax + b)$$
 with one of a, b correct M1
 $f(x) = (x+2)(9x^2 + 0x - 4)$ A1
 $f(x) = (x+2)(3x-2)(3x+2)$ A1
Roots are $x = -2, 2/3, -2/3$

Special case


Candidates who find one of the remaining factors, (3x-2) or (3x+2), using e.g. factor theorem, are awarded B1

9. (a)

Concave up curve and x -coordinate of minimum = 1	B1
y-coordinate of minimum $= -6$	B1
Both points of intersection with <i>x</i> -axis	B1

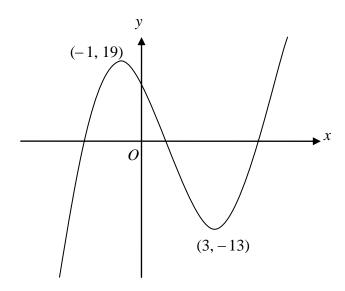
(*b*)

Concave up curve and y-coordinate of minimum $= -2$	B1
x-coordinate of minimum = -1	B1
Both points of intersection with <i>x</i> -axis	B1

Note: A candidate who draws a curve with no changes to the original graph is awarded 0 marks (both parts)

10. (a) $\frac{dy}{dx} = 3x^2 - 6x - 9$ B1

Putting candidate's derived $\frac{dy}{dx} = 0$ M1


x = -1, 3 (both correct) (f.t. candidate's $\frac{dy}{dx}$) A1

Stationary points are (-1, 19) and (3, -13) (both correct) (c.a.o) A1 A correct method for finding nature of stationary points yielding **either** (-1, 19) is a maximum point

or (3, -13) is a minimum point (f.t. candidate's derived values) M1 Correct conclusion for other point

(f.t. candidate's derived values) A1

(*b*)

Graph in shape of a positive cubic with two turning points

M1

Correct marking of both stationary points

(f.t. candidate's derived maximum and minimum points) A1

(c)
$$k < -13$$
 B1 19 < k B1

(f.t. candidate's y-values at stationary points)

Mathematics C2 January 2013

Solutions and Mark Scheme

Final Version

```
1.
                                                         0
                                                                                                                                                3.16227766
                                                         0.5
                                                                                                                                                3.142451272
                                                          1
                                                                                                                                                3
                                                         1.5
                                                                                                                                               2.573907535
                                                         2
                                                                                                                                               1.414213562
                                                                                                                                                                                                                                     (5 values correct)
                                                                                                                                                                                                                                                                                                                          B2
                                                         (If B2 not awarded, award B1 for either 3 or 4 values correct)
                             Correct formula with h = 0.5
                                                                                                                                                                                                                                                                                                                          M1
                             I \approx \underline{0.5} \times \{3.16227766 + 1.414213562 + 2(3.142451272 + 3 + 2.573907535)\}
                             I \approx 22.00920884 \times 0.5 \div 2
                             I \approx 5.50230221
                             I \approx 5.5023
                                                                                                                                                                                                                                     (f.t. one slip)
                                                                                                                                                                                                                                                                                                                          A1
                             Special case for candidates who put h = 0.4
                                                         0
                                                                                                                                                3.16227766
                                                         0.4
                                                                                                                                                3.152142129
                                                         0.8
                                                                                                                                               3.080259729
                                                          1.2
                                                                                                                                               2.876108482
                                                          1.6
                                                                                                                                               2.429814808
                                                                                                                                                1.414213562
                                                                                                                                                                                                                                     (all values correct)
                                                                                                                                                                                                                                                                                                                          B1
                             Correct formula with h = 0.4
                                                                                                                                                                                                                                                                                                                           M1
                             I \approx 0.4 \times \{3.16227766 + 1.414213562 + 2(3.152142129 + 3.080259729 + 1.414213562 + 2(3.152142129 + 3.080259729 + 1.414213562 + 2.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.4142129 + 3.080259729 + 1.414213562 + 2.4142129 + 3.080259729 + 1.4142129 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.414213562 + 1.41421364 + 1.41421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414421364 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.4144444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.414444 + 1.41444 + 1.41444 + 1.414444 + 1.41444 + 1.41444
                                                                                                                                                                                                        2.876108482 + 2.429814808)
                             I \approx 27.65314152 \times 0.4 \div 2
                             I ≈ 5.530628304
                             I \approx 5.5306
                                                                                                                                                                                                                                     (f.t. one slip)
                                                                                                                                                                                                                                                                                                                          A1
```

Note: Answer only with no working shown earns 0 marks

2. (a)
$$7\sin^2\theta - \sin\theta = 3(1 - \sin^2\theta)$$

(correct use of $\cos^2\theta = 1 - \sin^2\theta$) M1

A1

An attempt to collect terms, form and solve quadratic equation in $\sin \theta$, either by using the quadratic formula or by getting the expression into the form $(a \sin \theta + b)(c \sin \theta + d)$,

with $a \times c =$ candidate's coefficient of $\sin^2 \theta$ and $b \times d =$ candidate's constant m1

$$10 \sin^2 \theta - \sin \theta - 3 = 0 \Rightarrow (2 \sin \theta + 1)(5 \sin \theta - 3) = 0$$

\Rightarrow \sin \theta = \frac{1}{2}, \sin \theta = \frac{3}{2} \quad (c.a.o.)

$$\frac{-1}{2}$$
, $\sin \theta - \frac{3}{5}$

 $\theta = 210^{\circ}, 330^{\circ}$ B1, B1

$$\theta = 36.87^{\circ}, 143.13^{\circ}$$
 B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

> $\sin \theta = +, -, \text{ f.t. for 3 marks}, \sin \theta = -, -, \text{ f.t. for 2 marks}$ $\sin \theta = +, +, \text{ f.t. for } 1 \text{ mark}$

(b)
$$3x - 20^{\circ} = 52^{\circ}, 232^{\circ}, 412^{\circ}$$
 (one value) B1
 $x = 24^{\circ}, 84^{\circ}, 144^{\circ}$ B1, B1, B1

Note: Subtract (from final three marks) 1 mark for each additional root in range, ignore roots outside range.

3. (a)
$$x^2 = 10^2 + (x+4)^2 - 2 \times 10 \times (x+4) \times \frac{3}{5}$$
 (correct use of cos rule) M1
 $x^2 = 100 + x^2 + 8x + 16 - 12x - 48$ A1
 $x = 17$ (f.t. one slip) A1

$$\sin \alpha = \frac{4}{5}$$
 B1

Area of triangle $ABC = \frac{1}{2} \times 10 \times 21 \times \frac{4}{5}$

(substituting the correct values in the correct places in the area formula, f.t. candidate's values for x and $\sin \alpha$) M1Area of triangle $ABC = 84 \text{ cm}^2$

4. (a) (i)
$$n$$
th term = $1 + 4(n-1) = 1 + 4n - 4 = 4n - 3$ (convincing) B1

(ii)
$$S_n = 1 + 5 + \ldots + (4n-7) + (4n-3)$$

 $S_n = (4n-3) + (4n-7) + \ldots + 5 + 1$
Reversing and adding M1

Either:

$$2S_n = (4n-2) + (4n-2) + \ldots + (4n-2) + (4n-2)$$

Or:

$$2S_n = (4n - 2) + \dots$$
 (*n* times) A1

$$2S_n = n(4n-2)$$

 $S_n = n(2n-1)$ (convincing) A1

(b)
$$\frac{10}{2} \times [2a + 9d] = 55$$
 B1

Either: (a + 3d) + (a + 6d) + (a + 8d) = 27

Or:
$$(a+4d) + (a+7d) + (a+9d) = 27$$
 M1

$$3a + 17d = 27$$
 (seen or implied by later work) A1

An attempt to solve candidate's derived linear equations

simultaneously by eliminating one unknown M1

$$a = -8, d = 3 \text{ (both values)}$$
 (c.a.o.) A1

5. (a)
$$r = 1.5$$
 B1

A correct method for finding $(n + 4)$ th term

A correct method for finding (p + 4) th term M1

$$(p+4)$$
 th term = 81 (c.a.o.) A1

(b) Either:
$$\frac{a(1-r^3)}{1-r} = 22.8$$

Or: $a + ar + ar^2 = 22.8$

Or:
$$a + ar + ar^2 = 22.8$$

$$\frac{a}{1-r} = 18.75$$
 B1

An attempt to solve these equations simultaneously by eliminating a

M1

$$r^3 = -0.216$$
 A1

$$r = -0.6$$
 (c.a.o.) A1

$$a = 30$$
 (f.t. candidate's derived value for r) A1

6. (a)
$$5 \times \frac{x^{-3}}{-3} - 7 \times \frac{x^{5/3}}{5/3} + c$$
 (-1 if no constant term present) B1, B1

(b) (i)
$$9 - a^2 = 0 \Rightarrow a = 3$$
 B1

(ii)
$$\frac{dy}{dx} = \pm 2x$$
 M1

Gradient of tangent =
$$\pm 6$$
 (f.t. candidate's value for a) A1
b = 18 (convincing) A1

(iii) Either:

Area of triangle = 27 (f.t. candidate's value for *a*) B1 Use of integration to find the area under the curve M1 $\int (9 - x^2) dx = 9x - (1/3)x^3$ (correct integration) B1

Correct method of substitution of candidate's limits m1

$$[9x - (1/3)x^3]_0^3 = (27 - 9) - 0 = 18$$

Use of 0 and candidate's value for *a* as limits and trying to find total area by subtracting area under curve from area of triangle m1

Shaded area =
$$27 - 18 = 9$$
 (c.a.o.) A1

Or:

Equation of tangent is y = -6x + 18Use of integration to find an area M1

$$\int (-6x + 18) dx = -3x^2 + 18x$$
 (correct integration)
(f.t. one slip in candidate's equation of tangent) B1

$$\int (9 - x^2) dx = 9x - (1/3)x^3$$
 (correct integration) B1

Correct method of substitution of candidate's limits m1

$$[-3x^2 + 18x]_0^3 = (-27 + 54) - 0 = 27$$

(f.t. one slip in candidate's equation of tangent)

$$[9x - (1/3)x^3]_0^3 = (27 - 9) - 0 = 18$$

Use of 0 and candidate's value for *a* as limits and trying to find total area by subtracting area under curve from area under line

m1

Shaded area =
$$27 - 18 = 9$$
 (c.a.o.) A1

```
Then x = a^p, y = a^q
                                      (the relationship between log and power) B1
        \underline{x} = \underline{a}^p = a^{p-q}
                                                             (the laws of indicies) B1
             a^q
                                      (the relationship between log and power)
        \log_a x/y = p - q
                                                                      (convincing) B1
        \log_a x/y = p - q = \log_a x - \log_a y
(b)
        Either:
        (2x + 5) \log_{10} 6 = \log_{10} 7
                          (taking logs on both sides and using the power law) M1
        x = log_{10} 7 - 5 log_{10} 6
                                           (o.e.)
                                                                                       A1
                 2 \log_{10} 6
        x = -1.957
                                                     (f.t. one slip, see below)
                                                                                       A1
        Or:
        2x + 5 = \log_{6} 7
                                                    (rewriting as a log equation) M1
                                           (o.e.)
        x = \underline{\log_6 7 - 5}
                                                                                       A1
                 2
        x = -1.957
                                                    (f.t. one slip, see below)
                                                                                       A1
        Note: an answer of x = 1.957 from x = 5 \log_{10} 6 - \log_{10} 7
                                                             2 \log_{10} 6
                 earns M1 A0 A1
                 an answer of x = 3.043 from x = \frac{\log_{10} 7 + 5 \log_{10} 6}{\log_{10} 6}
                                                             2\log_{10}6
                 earns M1 A0 A1
                 an answer of x = -3.914 from x = log_{10} 7 - 5 log_{10} 6
                                                               \log_{10} 6
                 earns M1 A0 A1
```

Note: Answer only with no working shown earns 0 marks

7.

(a)

Let $p = \log_a x$, $q = \log_a y$

8.	(a)	(i)	A(-3, 5)	.1 1.0 0 1	ı.	B1
			A correct m Radius = $\sqrt{2}$	nethod for finding	gradius	M1 A1
		(ii)	Either:	20		AI
		()	A correct m	nethod for finding		M1
			$AP^2 = 18 (<$	$(20) \Rightarrow P \text{ is inside}$		
			Or:	(f.t. candidate	e's coordinates for A)	A1
				to substitute $x = \frac{1}{2}$	-6, $y = 2$ in the equation of C	M1
					$2+14=-2 \ (<0)$	
					\Rightarrow <i>P</i> is inside <i>C</i>	A 1
	(<i>b</i>)	(i)	An attempt circle	to substitute $(2x + 2x +$	+ 1) for y in the equation of the	ne M1
			$5x^2 - 10x +$	5 = 0		A1
			Either:	Use of $b^2 - 4a$		m1
					$= 0 \iff y = 2x + 1 \text{ is a tangen}$	
				the circle) $x = 1, y = 3$		A1 A1
			Or:	•	factorise candidate's quadrat	
				_	_	m1
				•	igle) root ($\Rightarrow y = 2x + 1$ is a ta	_
				to the circle) $x = 1, y = 3$		A1 A1
		(ii)	Either:	-,,		
			$RQ = \sqrt{45}$ o		2 1	D.1
			Correct sub	•	e's coordinates for A and Q) date's values in an expression	B1
			$\sin R, \cos R$		date 5 varies in an expression	M1
			ARQ = 33.6	59°	(f.t. one numerical slip)	A1
			Or: $RQ = \sqrt{45}$ o	m DA - 1/65		
			KQ = V430		e's coordinates for A and Q)	B1
			Correct sub	`	date's values in the cos rule to	
			$\cos R$	CO 0	(f. 4 1 . 1 .	M1
			ARQ = 33.6	09°	(f.t. one numerical slip)	A1
0	(a)	1 v 1	1 \(\) 1 1 \(\) 0 = 4	12 56		N/I 1
9.	(a)	$\frac{1}{2}$ × 1	$1 \times 11 \times \theta = 4$	+3.30		M1
		$\theta = 0$	·72 radians			A 1
	(<i>b</i>)	BC =	11 <i>a</i>			B1
	(0)		11ψ $11(\pi - \phi)$			B1
			$=11(\pi-\phi)\pm$	13		M 1
		$\phi = 0$	·98 radians		(c.a.o.)	A 1

Mathematics C3 January 2013

Solutions and Mark Scheme

Final Version

Note: Answer only with no working earns 0 marks

2. (a) (i) e.g.
$$\theta = 20^{\circ}$$
 $\cos^{3}\theta = 0.83$ (choice of θ and one correct evaluation) B1
 $1 - \sin^{3}\theta = 0.96$ (both evaluations correct but different) B1
(ii) $\theta = 0^{\circ}$ or $\theta = 90^{\circ}$ B1
(b) $4(1 + \cot^{2}\theta) = 9 - 8 \cot \theta$. (correct use of $\csc^{2}\theta = 1 + \cot^{2}\theta$) M1

An attempt to collect terms, form and solve quadratic equation in $\cot \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cot \theta + b)(c \cot \theta + d)$, with $a \times c = \text{candidate's coefficient of } \cot^2 \theta \text{ and } b \times d = \text{candidate's } \text{constant}$

$$4 \cot^{2} \theta + 8 \cot \theta - 5 = 0 \Rightarrow (2 \cot \theta - 1)(2 \cot \theta + 5) = 0$$

$$\Rightarrow \cot \theta = \frac{1}{2}, \cot \theta = -\frac{5}{2}$$

$$\Rightarrow \tan \theta = 2, \tan \theta = -\frac{2}{5}$$
(c.a.o.) A1

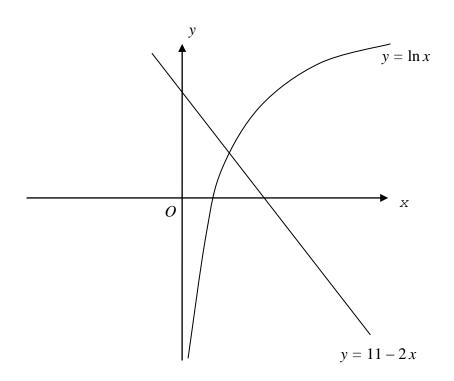
$$\theta = 63.43^{\circ}, 243.43^{\circ}$$
 B1
 $\theta = 158.2^{\circ}, 338.2^{\circ}$ B1, B1

Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.

$$\tan \theta = +, -, \text{ f.t. for 3 marks}, \tan \theta = -, -, \text{ f.t. for 2 marks}$$

 $\tan \theta = +, +, \text{ f.t. for 1 mark}$

3. (a)
$$\underline{d}(2y^3) = 6y^2 \underline{dy}$$
 B1
 $\underline{d}(5x^4y) = 5x^4 \underline{dy} + 20x^3y$ B1
 $\underline{d}(x^3) = 3x^2, \ \underline{d}(7) = 0$ B1
 $\underline{d}(x^3) = 3x^2, \ \underline{d}(7) = 0$ B1
 $\underline{d}(x^3) = 3x^3, \ \underline{d}(7) = 0$ B1
 $\underline{d}(x^3) = 3x^3, \ \underline{d}(7) = 0$ Co.e.)


(b) (i) candidate's x-derivative =
$$3t^2$$
 B1 candidate's y-derivative = $4t^3 + 35t^4$ B1 $\frac{dy}{dx} = \frac{\text{candidate's } y\text{-derivative}}{\text{dx candidate's } x\text{-derivative}}$ M1 $\frac{dy}{dx} = \frac{4t^3 + 35t^4}{3t^2}$ (c.a.o.) A1 (ii) $\frac{d}{dt} \left[\frac{dy}{dx} \right] = \frac{4 + 70t}{3}$ (o.e.) B1

Use of
$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div \frac{dx}{dt}$$
(f.t. candidate's expression for $\frac{dy}{dx}$) M1

$$\frac{d^2y}{dx^2} = \frac{4 + 70t}{9t^2}$$
 (o.e.) A1

(iii) An attempt to solve
$$t^3 - 5 = 3$$
 and substitution of answer in candidate's expression for $\frac{d^2y}{dx^2}$ M1
$$\frac{d^2y}{dx^2} = 4$$
 (c.a.o.) A1

4. (*a*)

Correct shape for $y = \ln x$, including the fact that the y-axis is an asymptote at $-\infty$ B1
A straight line with positive intercept and negative gradient intersecting once with $y = \ln x$ in the first quadrant. B1
Equation has one root (c.a.o.)

(*b*) $x_0 = 4.7$ $x_1 = 4.726218746$ (x_1 correct, at least 5 places after the point) B1 $x_2 = 4.723437268$ $x_3 = 4.723731615$ $x_4 = 4.723700458 = 4.72370$ $(x_4 \text{ correct to 5 decimal places})$ Let $h(x) = \ln x + 2x - 11$ An attempt to check values or signs of h(x) at x = 4.723695, x = 4.723705M1 $h(4.723695) = -1.87 \times 10^{-5} < 0, h(4.723705) = 3.45 \times 10^{-6} > 0$ **A**1 Change of sign $\Rightarrow \alpha = 4.72370$ correct to five decimal places **A**1

5. (a) (i)
$$\frac{dy}{dx} = \frac{1}{2} \times (5x^2 - 3x)^{-1/2} \times f(x) \qquad (f(x) \neq 1)$$
 M1
$$\frac{dy}{dx} = \frac{1}{2} \times (5x^2 - 3x)^{-1/2} \times (10x - 3)$$
 A1

(ii)
$$\frac{dy}{dx} = \frac{\pm 7}{\sqrt{(1 - (7x)^2)}} \quad \text{or} \quad \frac{1}{\sqrt{(1 - (7x)^2)}} \quad \text{or} \quad \frac{7}{\sqrt{(1 - 7x^2)}}$$

$$\frac{dy}{dx} = \frac{7}{\sqrt{(1 - 49x^2)}}$$
(iii)
$$\frac{dy}{dx} = e^{3x} \times f(x) + \ln x \times g(x)$$
M1

(iii)
$$\frac{dy}{dx} = e^{3x} \times f(x) + \ln x \times g(x)$$

$$\frac{dy}{dx} = e^{3x} \times f(x) + \ln x \times g(x)$$

$$\frac{dx}{dx} \qquad \text{(either } f(x) = 1/x \text{ or } g(x) = 3e^{3x})$$

$$\frac{dy}{dx} = \frac{e^{3x}}{x} + 3e^{3x} \ln x \qquad \text{(all correct)}$$
A1

(b)
$$\frac{d(\cot x) = \frac{\sin x \times m \sin x - \cos x \times k \cos x}{\sin^2 x} \quad (m = 1, -1, k = 1, -1) \quad M1}{dx}$$

$$\frac{d(\cot x) = \frac{\sin x \times (-\sin x) - \cos x \times (\cos x)}{\sin^2 x}$$

$$\frac{d(\cot x) = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$$

$$\frac{d(\cot x) = \frac{-1}{\sin^2 x} = -\csc^2 x \quad (convincing)$$

$$\frac{d(\cot x) = \frac{-1}{\sin^2 x} = -\csc^2 x \quad (convincing)$$

$$\frac{d(\cot x) = \frac{-1}{\sin^2 x} = -\csc^2 x \quad (convincing)$$

$$\frac{d(\cot x) = \frac{-1}{\sin^2 x} = -\csc^2 x \quad (convincing)$$

$$\frac{d(\cot x) = \frac{-1}{\sin^2 x} = -\csc^2 x \quad (convincing)$$

6. (a) (i)
$$\int \cos\left[\frac{4x+5}{3}\right] dx = k \times \sin\left[\frac{4x+5}{3}\right] + c \quad (k=1, \sqrt[4]{3}, \sqrt[3]{4}, -\sqrt[3]{4}, \sqrt[3]{4})$$
M1

$$\int \cos\left[\frac{4x+5}{3}\right] dx = \frac{3}{4} \times \sin\left[\frac{4x+5}{3}\right] + c$$
 A1

(ii)
$$\int_{0}^{\infty} e^{2x+9} dx = k \times e^{2x+9} + c$$

$$\int_{0}^{\infty} e^{2x+9} dx = \frac{1}{2} \times e^{2x+9} + c$$
 A1

(iii)
$$\int \frac{3}{\sqrt{(7-2x)^6}} dx = \frac{3}{-5k} \times (7-2x)^{-5} + c \qquad (k=1, 2, -2, -\frac{1}{2})$$
M1
$$\int \frac{3}{\sqrt{(7-2x)^6}} dx = \frac{3}{-5 \times -2} \times (7-2x)^{-5} + c \qquad A1$$

Note: The omission of the constant of integration is only penalised once.

(b)
$$\int \frac{1}{3x-4} dx = k \times \ln|3x-4| \qquad (k = 1, 3, \frac{1}{3}) \qquad M1$$

$$\int \frac{1}{3x-4} dx = \left[\frac{1}{2} \times \ln|3x-4|\right] \qquad A1$$

$$\int \frac{1}{3x - 4} dx = \begin{bmatrix} 1/3 \times \ln|3x - 4| \end{bmatrix}$$
 A1

A correct method for substitution of limits 2, 44, in an expression of the form $k \times \ln |3x - 4|$ $(k = 1, 3, \frac{1}{3})$ m1

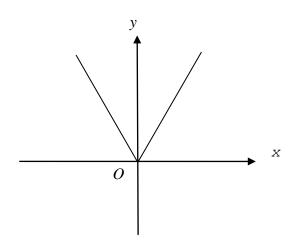
$$\int_{3}^{44} \frac{1}{3x - 4} dx = \ln 4$$
 (c.a.o.) A1

7. (a) Trying to solve either 3x - 4 > 5 or 3x - 4 < -5M1

$$3x - 4 > 5 \Rightarrow x > 3$$

$$3x-4<-5 \Rightarrow x<-\frac{1}{3}$$
 (both inequalities) A1

$$3x-4<-5 \Rightarrow x<-\frac{1}{3}$$
 (both inequalities) A1
Required range: $x<-\frac{1}{3}$ or $x>3$ (f.t. one slip) A1


Alternative mark scheme

$$(3x-4)^2 > 25$$

(squaring both sides, forming and trying to solve quadratic) M1

Critical values $x = -\frac{1}{3}$ and x = 3Required range: $x < -\frac{1}{3}$ or x > 3(f.t. one slip in critical values) A1

(*b*) (i)

G1

(ii)
$$a = -2$$
 B1

b = -4**B**1

8. **B**1 $y + 2 = \ln(4x + 5)$ (a)

An attempt to express candidate's equation as an exponential equation

$$x = (e^{y+2} - 5)$$
 (f.t. one slip) A1

$$f^{-1}(x) = (e^{x+2} - 5)$$
 (f.t. one slip) A1

(b)
$$D(f^{-1}) = [-2, \infty)$$
 B1

9. (a) (i) $D(fg) = (0, \infty)$ B1

(ii) R(fg) = [a, b) with a = -25

$$a = -25$$
 B1

$$b = \infty$$
 B1

(iii)
$$fg(x) = (2x-3)^2 - 25$$
 B1

(iv) Putting candidate's expression for fg(x) equal to 0 and using a correct method to try and solve the resulting quadratic in x M1 x = 4, x = -1, (c.a.o.) A1

$$x = 4$$
 (c.a.o.) A1

(b) (i)
$$hh(x) = \frac{2 \times 2x + 7 + 7}{5x - 2}$$
 M1
$$5x + 7 - 2$$
 5x - 2

$$hh(x) = \frac{4x + 14 + 35x - 14}{10x + 35 - 10x + 4}$$

$$hh(x) = x$$
 (convincing) A1

(ii)
$$h^{-1}(x) = h(x)$$
 B1

Mathematics M1 January 2013

Solutions and Mark Scheme

Final Version

Q	Solution	Mark	Notes
1(a).	Using $v = u + at$ with $u=12$, $v=32$, $t=4$ 32 = 12 + 4a $a = 5 \text{ ms}^{-2}$	M1 A1 A1	o.e. cao
1(b)	Using $s = ut + 0.5at^2$, $u=12,t=4$, $a=5$ $s = 12x \ 4 + 0.5x \ 5x \ 4^2$ $s = 88 \ m$	M1 A1 A1	cao
	OR Using $v^2 = u^2 + 2as$, $u=12$, $v=32$, $a=5$ $32^2 = 12^2 + 2 \times 5s$ s = 88 m	M1 A1 A1	cao
	OR Using $s = 0.5(u + v)t$, $u=12$, $v=32$, $t=4$ $s = 0.5(12 + 32) \times 4$ s = 88m	M1 A1 A1	cao
1(c)	Using $v^2 = u^2 + 2as$, $u=12$, $a=5$, $s=44$ $v^2 = 12^2 + 2 \times 5 \times 44$ $v = 24.2 \text{ ms}^{-1}$		ft answer in (b) for s ft (b) ft (b)

Q	Solution	Mark	Notes
2(a)(i)	e = 0	B1	
2(a)(ii)	Conservation of momentum equation $3 \times 4 + 7 \times 0 = 3v_A + 7v_B$ 12 = 10v	M1 A1	zero term not required
2(b)(i)	$v = 1.2 \text{ ms}^{-1}$ v' = 0.25 x 5 v' = 1.25	M1 A1	$\mathbf{v} = \mathbf{v_A} = \mathbf{v_B}$
2(b)(ii)	I = 6(5 + 1.25) I = 37.5 Units for I is Ns		allow –I Ft answer in (b(i)) allow dimensions kgms ⁻¹
© WJEC CBA	C Ltd.		

Q	Solution	Mark	Notes
3(a)	$s = ut + 0.5at^2$, $s=(\pm)1.2$, $a=(\pm)9.8$, $u=15$ $-1.2 = 15t + 0.5 \times (-9.8)t^2$ $4.9t^2 - 15t - 1.2 = 0$	M1 A1	complete method
	Use of correct formula to solve quad eq $t = 3.139$	m1	
	t = 3.137 t = 3.1 s (to one d. p.)	A1	
3(b)	For the model used, the time taken for the particle to reach the ground is independent of the weight of the particle. I would expect the time to be the same as that in (a).	E1	no reason given gets E0
© WJEC CBA	AC Ltd.		

Q	Solution	Mark	Notes
4.	Resolve in direction of 12 N Psin45 + Qsin30 = 12	M1 A1	equation required
	Resolve in direction of 8N Pcos45 = Qcos30 + 8	M1 A1	equation required
	Attempt to eliminate one variable $Q(\sin 30 + \cos 30) = 4$	m1	sensible method
	$Q = \frac{8}{1 + \sqrt{3}} = 2.928$		
	Q = 2.9 N	A1	
	$\frac{1}{\sqrt{2}}$ P = 12 – 0.5 x Q		
	$P = \frac{14.9 \text{ N}}{}$	A1 PA-1	if coefficients
			approximated
© WJEC CE	ACLid		

Q	Solution	Mark	Notes
5. 5(a)	Resolve perp. to plane $R = 75g \cos \alpha$ $F = \mu R$ $F = 0.3 \times 75 \times 9.8 \cos 25^{\circ}$ $F = 199.84 \text{ N}$ $N2L \text{ parallel to plane}$	M1 M1 A1	used dim correct, all forces eq Allow –F, 75a on RHS
	T + F - 75g sin 25° = 0 T = 75 x 9.8 x sin 25° - 199.84 T = $\frac{110.78 \text{ N}}{10.78 \text{ N}}$ N2L parallel to plane 75g sin 25° - F = 75a 75a = 75 x 9.8 x sin25° - 199.84 a = $\frac{1.48 \text{ ms}^{-2}}{1.48 \text{ ms}^{-2}}$	A1 A1 A1 A1	cao dim correct eq Comp wt and F opposing Ft T in (a), allow consistent –ve ans

Q	Solution	Mark	Notes
6(a).	$\begin{array}{c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		
6(b)	Apply N2L to lift 800g - T = 800a $800a = 800 \times 9.8 - 6500$ $a = 1.675 \text{ ms}^{-2}$	A1 A1	dim correct, ±(T-800g) allow 1.68
	25g Apply N2l to parcel $25g - R = 25a$ $R = 25 \times 9.8 - 25 \times 1.675$ $R = 203.125 \text{ N}$	A1	dim correct ±(25g-R) ft (a) ft (a)

Q	Solution	Mark	Notes
7.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
7(a)	When beam about to tilt about D, R_C =0 Moments about D $1800 \times (6 - 1.2) + (R_C \times 3.8) = W \times 1.8$ $W = 4800 \text{ N}$	B1	equation required (or 2 equations) correct moment correct equation (or 2 correct equations) cao
	Moments about C $R_D \times 3.8 = 4800 \times 2$ $R_D = 2526.32 \text{ N}$ Resolve vertically $R_C + R_D = 4800$ $R_C = 2273.68 \text{ N}$	A1 A1 M1	dim correct equation ft W ft W

Q	Solution	Mark	Notes
8.	$ \begin{array}{c c} R \\ \uparrow \\ A \\ \hline T \\ 5g \end{array} $ $ \begin{array}{c} B \\ gg $		
	Apply N2L to particle A/B $126 - T = 5a$ Apply N2L to B/A $T - 9g = 9a$ Eliminating T $a = 2.7 \text{ ms}^{-2}$ $T = 112.5 \text{ N}$	M1 A1 m1 A1	dim correct correct eq allow ±a dim correct consistent with 1 st eq reasonable method cao allow – if correct cao
©WJEC CB	AC Ltd.		

Q	Solution	Mark	Notes
9(a)	shape Area fr AD fr AB ABCD 30 2.5 3 XYZ 1.5 3.5 2 Lamina 28.5 x y	B1 B1 B1	one correct row/column c of m all correct correct areas
	Moments about AD $28.5x + 1.5 \times 3.5 = 30 \times 2.5$	M1 A1	equation required Ft table
	$x = \frac{93}{38} = \underline{2.447}$	A1	cao
	Moments about AB $28.5y + 1.5 \times 2 = 30 \times 3$	M1 A1	equation required Ft table
	$y = \frac{58}{19} = \underline{3.053}$	A1	cao
	(116) (3.053)		
9(b)	$\theta = \tan^{-1} \left(\frac{116}{93} \right) = \tan^{-1} \left(\frac{3.053}{2.447} \right)$	M1	correct triangle
	$\theta = 51.3^{\circ}$	A1 A1	ft (a) correct values ft (a) PA-1 if 1 dp used
9(c)	$DP = \frac{93}{38} = \underline{2.447}$	B1	Ft x
© WJEC CB	AC Ltd.	<u> </u>	

Mathematics S1 January 2013

Solutions and Mark Scheme

Final Version

Ques	Solution	Mark	Notes
1(a)	Use of $P(A \cup B) + P(A \cap B) = P(A) + P(B)$	M1	
	Use of $P(A \cap B) = P(A)P(B)$	m1	
	0.4 + 0.2P(B) = 0.2 + P(B)	A1	
	P(B) = 0.25	A1	
(b)	EITHER		
	We require $P(A \cap B') + P(A' \cap B)$	M1	FT their P(B)
	$= 0.2 \times (1 - 0.25) + 0.25 \times (1 - 0.2)$	A1	
	= 0.35	A1	
	OR		
	We require $P(A \cup B) - P(A \cap B)$	M1	FT their P(B)
	$=0.4-0.2\times0.25$	A1	
	= 0.35	A1	
2(a)	E(X) = 3.2, Var(X) = 2.56	B1B1	
	$E(Y) = 2 \times 3.2 + 5 = 11.4$ cao	M1A1	
	$Var(Y) = 4 \times 2.56 = 10.24$ cao	M1A1	
(b)	$Y = 11 \Rightarrow X = 3$	B1	
	$P(X=3) = {16 \choose 3} \times 0.2^3 \times 0.8^{13} = 0.246$	M1A1	FT their derived value of X
	(X - 3) - (3)		M0 if no working
3(a)	(6)(5)(11)		
	$P(2 \text{ red}) = \frac{6}{11} \times \frac{5}{10} \times \frac{5}{9} \times 3 \text{ or } \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \div \begin{pmatrix} 11 \\ 3 \end{pmatrix}$	M1A1	
	$=\frac{5}{11}$ (0.455)	A1	
(b)	$4 \ 2 \ 7 \ (4)(7) \ (11)$		
(0)	P(2 green) = $\frac{4}{11} \times \frac{3}{10} \times \frac{7}{9} \times 3$ or $\binom{4}{2} \binom{7}{1} \div \binom{11}{3}$	M1A1	
		1,1111	
	$=\frac{14}{55}$ (0.255)		
	55	A1	
	P(2 the same) = 5 + 14		
	P(2 the same) = $\frac{5}{11} + \frac{14}{55}$	M1	
	$=\frac{39}{55}$ (0.709)		
	55	A1	FT on their probs

Ques	Solution	Mark	Notes
4(a)(i)	Poisson mean $= 6$	B1	
(22)	$P(4 \text{ arrivals}) = e^{-6} \times \frac{6^4}{4!} = 0.134 \text{ cao}$	M1A1	Accept 0.2851 – 0.1512 or 0.8488 – 0.7149 M0 if no working
(ii)	EITHER P(between 2 and 8) = $0.8472 - 0.0174$ or $0.9826 - 0.1528$ = 0.8298 cao OR	B1B1 B1	M0 if no working
	P(between 2 and 8) = $\sum_{x=2}^{8} e^{-6} \times \frac{6^{x}}{x!}$ = 0.0446 + 0.0892 + 0.1339 + 0.1606 + 0.1606	M1 A1	M0 if no working
(b)	+0.1377 + 0.1033 = 0.83 cao E(X) = 12 $E(X^{2}) = E(X) + [E(X)]^{2} = 156$	A1 B1 M1A1	M1 requires $Var(X) = E(X)$ FT their mean
(ii) (b)	Let X denote the number of seeds producing red flowers so that X is $B(20,0.7)$ si $P(X = 15) = \binom{20}{15} \times 0.7^{15} \times 0.3^{5}$ $= 0.179$ The number of seeds not producing red flowers, X' , is $B(20,0.3)$ We require $P(X > 12) = P(X' < 8)$ $= 0.7723$	B1 M1 A1 M1 m1 A1	M0 if no working Accept 0.4164 – 0.2375 or 0.7625 – 0.5836
	Number of seeds producing white flowers Y is $B(150,0.09) \approx Poi(13.5) \text{ si}$ $P(Y = 10) = e^{-13.5} \times \frac{13.5^{10}}{10!}$ $= 0.076$	B1 M1 A1	Do not accept use of interpolation in tables M0 if no working

Ques	Solution	Mark	Notes
6(a)	k(2+3+4+5)=1	M1	
	14k = 1 $k = 1/14$	A1	Must be convincing
(b)	$E(X) = \frac{2}{14} \times 1 + \frac{3}{14} \times 2 + \frac{4}{14} \times 3 + \frac{5}{14} \times 4$	M1	
	$=\frac{20}{7}$ (2.86)	A1	Accept 40k
	$E(X^2) = \frac{2}{14} \times 1 + \frac{3}{14} \times 4 + \frac{4}{14} \times 9 + \frac{5}{14} \times 16 $ (65/7)	B1	Accept in terms of <i>k</i>
	$Var(X) = 65/7 - (20/7)^2$ = 1.12 (55/49)	M1 A1	Numerical value required
(c)	The possibilities are $(x_1, x_2) = (1,2), (2,3), (3,4)$ si	B1	•
	$Prob = \frac{2}{14} \times \frac{3}{14} + \frac{3}{14} \times \frac{4}{14} + \frac{4}{14} \times \frac{5}{14}$	M1A1	
	=0.194 (19/98)	A1	Numerical value required
7(a)	$P(+) = 0.02 \times 0.96 + 0.98 \times 0.01$ = 0.029	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
(b)(i)	$P(Disease +) = \frac{0.02 \times 0.96}{0.029}$	B1B1	FT denominator from (a) B1 num, B1 denom
(ii)	= 0.662 (96/145) cao	B1	
	EITHER		
	$P(+) = 0.662 \times 0.96 + 0.338 \times 0.01$ $= 0.639$	M1A1 A1	M1 Use of Law of Total Prob (Accept tree diagram)
	OR $P(+) = \frac{0.02 \times 0.96^2 + 0.98 \times 0.01^2}{0.029}$ $= 0.639$	M1A1 A1	FT from (b)(i) M1 valid attempt to use conditional probability

Ques	Solution	Mark	Notes
8(a)(i)	$P(0.25 \le X \le 0.75) = F(0.75) - F(0.25)$	M1	
	= 0.6875 (11/16)	A1	
(ii)	The median satisfies		
	$2m^2 - m^4 = 0.5$	B 1	
	$2m^4 - 4m^2 + 1 = 0$		
(iii)	(Root) = $\frac{4 \pm \sqrt{16 - 8}}{4}$ (= 0.29289)	M1A1	Condone the omission of the redundant root
	$m = \sqrt{0.29289} = 0.541$	M1A1	
(b)(i)	$f(x) = \frac{d}{dx}(2x^2 - x^4)$ = $4x - 4x^3$	M1 A1	
(ii)	$E(\sqrt{X}) = \int_{0}^{1} \sqrt{x} (4x - 4x^{3}) dx$	M1A1	M1 for the integral of $\sqrt{x}f(x)$
	$= \left[4x^{5/2} \times \frac{2}{5} - 4x^{9/2} \times \frac{2}{9}\right]_0^1$	A1	A1 for completely correct although limits may be left until 2 nd line.
	$=\frac{32}{45} (0.711)$	A1	FT their $f(x)$ from (b)(i) if M1 awarded there.

Mathematics FP1 January 2013

Solutions and Mark Scheme

Final Version

2x - y = 5 x - 2y = 1 x = 3, y = 1 (z = 3 + i) A1 A1	Ques	Solution	Mark	Notes
	1	$f(x+h) - f(x) = \frac{1}{2 + (x+h)^2} - \frac{1}{2 + x^2}$	M1A1	
		$=\frac{2+x^2-2-(x+h)^2}{(2+(x+h)^2)(2+x^2)}$	A1	
		$=\frac{-2xh-h^2}{(2+(x+h)^2)(2+x^2)}$	A1	
2(a) By row reduction, $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 5 \\ 0 & 5 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ k-4 \end{bmatrix}$ It follows now that $k-4=6$ $k=10$ (b) Put $z=a$. $Then y=\frac{6}{5}-\alpha and x=\frac{8}{5}-\alpha A1 3(a) \frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)} = \frac{10+2i}{2} (5+i) i(x+iy)+2(x-iy)=5+i 2x-y=5 x-2y=1 x=3, y=1 (z=3+i) (b) A1 A1 A1 Award M1 for substituting for z, \overline{z} A1 A1 A1 A1 A1 A1 A1 A1 A1 A1$		$f'(x) = \lim_{h \to 0} \left(\frac{-2xh - h^2}{h(2 + (x+h)^2)(2 + x^2)} \right)$	M1	
$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 5 \\ 0 & 5 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ k-4 \end{bmatrix}$ It follows now that $k-4=6$ $k=10$ Put $z=\alpha$. Then $y=\frac{6}{5}-\alpha$ and $x=\frac{8}{5}-\alpha$ $\begin{bmatrix} 3(a) & \frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)} \\ & & $		$= \frac{-2x}{(2+x^2)^2}$	A1	
It follows now that $k-4=6$ $k=10$ Put $z=\alpha$. Then $y=\frac{6}{5}-\alpha$ and $x=\frac{8}{5}-\alpha$ M1 A1 FT their k if used A1 3(a) $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy)+2(x-iy)=5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ A1 Award M1 for substituting for z, \overline{z} A1 A1 A1 Award M1 for substituting for z, \overline{z}	2(a)		M1	
It follows now that $k-4=6$ $k=10$ Put $z=\alpha$. Then $y=\frac{6}{5}-\alpha$ and $x=\frac{8}{5}-\alpha$ M1 A1 FT their k if used A1 3(a) $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy)+2(x-iy)=5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ A1 Award M1 for substituting for z, \overline{z} A1 A1 A1 Award M1 for substituting for z, \overline{z}		$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$		
It follows now that $k-4=6$ $k=10$ Put $z=\alpha$. Then $y=\frac{6}{5}-\alpha$ and $x=\frac{8}{5}-\alpha$ M1 A1 FT their k if used A1 3(a) $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy)+2(x-iy)=5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ A1 Award M1 for substituting for z, \overline{z} A1 A1 A1 Award M1 for substituting for z, \overline{z}		$\begin{vmatrix} 0 & 5 & 5 & y \end{vmatrix} = \begin{vmatrix} 6 & 6 & 6 \end{vmatrix}$	A1	
(b) Put $z = a$. Then $y = \frac{6}{5} - a$ and $x = \frac{8}{5} - a$ $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy) + 2(x-iy) = 5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ (b) Put $z = a$. M1 A1 FT their k if used M1 A1A1 A1A1 Award M1 for substituting for z, \overline{z} A1 A1 A1 A1 A2 A3 A1 A1 A3 A3 A1 A3 A3 A1 A3 A3		$\begin{bmatrix} 0 & 5 & 5 \end{bmatrix} \begin{bmatrix} z \end{bmatrix} \begin{bmatrix} k-4 \end{bmatrix}$	A1	
Then $y = \frac{6}{5} - \alpha$ and $x = \frac{8}{5} - \alpha$ A1 ST their k if used A1 3(a) $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy) + 2(x-iy) = 5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ A1 AWARD M1 for substituting for z, \overline{z} A1 A1 A1			A1	
Then $y = \frac{6}{5} - \alpha$ and $x = \frac{8}{5} - \alpha$ A1 FT their k if used A1 3(a) $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy) + 2(x-iy) = 5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ A1 AWARD M1 for substituting for z, \overline{z} A1 A1 A1	(b)		M1	
and $x = \frac{8}{5} - \alpha$ A1 3(a) $\frac{4+6i}{1+i} = \frac{(4+6i)(1-i)}{(1+i)(1-i)}$ $= \frac{10+2i}{2} (5+i)$ $i(x+iy) + 2(x-iy) = 5+i$ $2x-y=5$ $x-2y=1$ $x=3, y=1$ $(z=3+i)$ A1 A1 Award M1 for substituting for z, \overline{z} A1 A1		Then $y = \frac{6}{5} - \alpha$		FT their k if used
			A1	
	3(a)	4+6i (4+6i)(1-i)		
$i(x + iy) + 2(x - iy) = 5 + i$ $2x - y = 5$ $x - 2y = 1$ $x = 3, y = 1$ $(z = 3 + i)$ An Award M1 for substituting for z, \overline{z} A1 A1		$\frac{1+i}{1+i} = \frac{(1+i)(1-i)}{(1+i)(1-i)}$	M1	
2x - y = 5 x - 2y = 1 x = 3, y = 1 (z = 3 + i) A1 A1		$=\frac{10+2i}{2}$ (5+i)	A1A1	
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$			M1	Award M1 for substituting for z, \bar{z}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A1	
(z = 3 + i)				
(b) $Mod(z) = \sqrt{10}$ (3.16)		The state of the s		
	(b)	$Mod(z) = \sqrt{10}$ (3.16)	B1	
$Arg(z) = tan^{-1}(1/3) = 0.322 (18.4^{\circ})$ B1 FT their z		$Arg(z) = tan^{-1}(1/3) = 0.322 (18.4^{\circ})$	B1	FT their z

Ques	Solution	Mark	Notes
4(a)	Det = $\lambda(15-7\lambda) + 4\lambda - 5 - 5 = -7\lambda^2 + 19\lambda - 10$	M1A1	
	A is singular when $det(\mathbf{A}) = 0$	M1	
	$\lambda = \frac{-19 \pm \sqrt{81}}{-14} = 2, \frac{5}{7}$	M1A1	
(b)(i)	Cofactor matrix = $\begin{bmatrix} 8 & -1 & -5 \\ 2 & 1 & -3 \\ -2 & 0 & 2 \end{bmatrix}$	M1 A1	Award M1 if at least 5 cofactors are correct.
	Adjugate matrix = $\begin{bmatrix} 8 & 2 & -2 \\ -1 & 1 & 0 \\ -5 & -3 & 2 \end{bmatrix}$	A1	No FT on cofactor matrix.
(ii)	Determinant = 2	B 1	
	Inverse matrix = $\frac{1}{2} \begin{bmatrix} 8 & 2 & -2 \\ -1 & 1 & 0 \\ -5 & -3 & 2 \end{bmatrix}$	A1	FT the adjugate or determinant
5(a)	$\alpha + \beta + \gamma = -4, \beta \gamma + \gamma \alpha + \alpha \beta = 3, \alpha \beta \gamma = -2$	B1	
	$\frac{1}{\beta \gamma} + \frac{1}{\gamma \alpha} + \frac{1}{\alpha \beta} = \frac{\alpha + \beta + \gamma}{\alpha \beta \gamma}$	M1A1	
(b)	$= 2$ $\frac{1}{\gamma\alpha} \times \frac{1}{\alpha\beta} + \frac{1}{\alpha\beta} \times \frac{1}{\beta\gamma} + \frac{1}{\beta\gamma} \times \frac{1}{\gamma\alpha} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha^2 \beta^2 \gamma^2}$	M1A1	
	$= \frac{3}{4}$ 1 1 1 1 1	A1	
	$\frac{1}{\beta \gamma} \times \frac{1}{\gamma \alpha} \times \frac{1}{\alpha \beta} = \frac{1}{\alpha^2 \beta^2 \gamma^2} = \frac{1}{4}$	M1A1	
	The required cubic equation is $x^{3} - 2x^{2} + \frac{3}{4}x - \frac{1}{4} = 0$ $(4x^{3} - 8x^{2} + 3x - 1 = 0)$	B1	FT their previous values

Ques	Solution	Mark	Notes
6	Putting $n = 1$, the expression gives 1 which is correct so the result is true for $n = 1$	B1	
	Assume that the formula is true for $n = k$.	M1	
	$(\sum_{k=1}^{k} r^3 = \frac{k^2(k+1)^2}{4}).$	IVII	
	Consider (for $n = k + 1$)		
	$\sum_{r=1}^{k+1} r^3 = \frac{k^2(k+1)^2}{4} + (k+1)^3$	M1A1	
	$=\frac{(k+1)^2}{4}(k^2+4k+4)$	A1	
	$=\frac{(k+1)^2(k+2)^2}{4}$	A1	
	Therefore true for $n = k \Rightarrow$ true for $n = k + 1$ and since true for $n = 1$, the result is proved by induction.	A1	
7(a)	Taking logs,	D1	
	$\ln f(x) = (\ln x)^2$	B 1	
	Differentiating, $\frac{f'(x)}{f(x)} = \frac{2\ln x}{x}$	B1B1	B1 for LHS, B1 for RHS
	$f(x) \qquad x$ $f'(x) = 2x^{\ln x} \frac{\ln x}{x}$	B1	
(b)	At a stationary point, $f'(x) = 0$ $\ln x = 0$ x = 1, y = 1	M1 A1 A1	
	EITHER Consider $f(0.9) = 1.011$, $f(1.1) = 1.009$ It is a minimum. OR	M1 A1	
	Consider $f'(0.9) = -0.236, f'(1.1) = 0.174$ It is a minimum.	M1 A1	Accept correct analysis leading to $f''(1) = 2$

Ques	Solution	Mark	Notes
8(a)	Rotation matrix = $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$	B1	
	* - L	DI	
	Reflection matrix $= \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	B1	
	$\mathbf{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$	B 1	
	$=\frac{1}{\sqrt{2}}\begin{bmatrix} -1 & -1\\ -1 & 1 \end{bmatrix}$		
(b)(i)	Consider		
	$\frac{1}{\sqrt{2}}\begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \lambda \\ m\lambda \end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix} -(m+1)\lambda \\ (m-1)\lambda \end{bmatrix}$		
	$\sqrt{2} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} m\lambda \end{bmatrix} \sqrt{2} \begin{bmatrix} (m-1)\lambda \end{bmatrix}$	M1	
	The image line satisfies		
	$x = -(m+1)\lambda/\sqrt{2}; y = (m-1)\lambda/\sqrt{2}$	A1	The $\sqrt{2}$ need not be present
	Eliminating λ ,		
(ii)	$y = \left(\frac{1-m}{1+m}\right)x$	A1	
	We are given that		
	We are given that $1-m \rightarrow m^2 + 2m = 1-0$	M1	
	$\frac{1-m}{1+m} = m \Rightarrow m^2 + 2m - 1 = 0$		
	Solving, $m = -1 \pm \sqrt{2}$	m1 A1	
0()		3.54	
9(a)	$u + iv = (x + iy)^2 + x + iy$	M1	
	$= x^{2} + 2ixy + i^{2}y^{2} + x + iy$ whence $v = 2xy + y = (2x+1)y$	A1	
	and $u = x^2 - y^2 + x$	A1	
(b)	Substituting $y = x + 1$,	M1	
	$u = x^{2} - (x+1)^{2} + x = -x - 1$	A1	FT their expression for u from (a)
	$v = (2x + 1)(x + 1) = 2x^2 + 3x + 1$	A1	Accept substitution of <i>x</i> in terms of <i>y</i> and subsequent elimination of <i>y</i>
	Attempting to eliminate x ,	M1	
	x = -u - 1 $v = 2(-u - 1)^{2} + 3(-u - 1) + 1$	A1 A1	No further FT for incorrect <i>u</i>
	$v = 2(-u-1) + 3(-u-1) + 1$ $= 2u^2 + u$	A1 A1	TNO TUTUICI FT TOT INCORRECT U

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk